Trunk Neural Crest Has Skeletogenic Potential
نویسندگان
چکیده
During early vertebrate development, neural crest cells emerge from the dorsal neural tube, migrate into the periphery, and form a wide range of derivatives. There is, however, a significant difference between the cranial and trunk neural crest with respect to the diversity of cell types that each normally produces. Thus, while crest cells from all axial levels form neurons, glia, and melanocytes, the cranial crest additionally generates skeletal derivatives such as bone and cartilage; trunk crest cells are generally thought to lack skeletogenic potential. Here, we show, however, that if avian trunk neural crest cells are cultured in appropriate media, they form both bone and cartilage cells, and if placed into the developing head, they contribute to cranial skeletal components. Thus, the neural crest from all axial levels can generate the full repertoire of crest derivatives. The skeletogenic potential of the trunk neural crest is significant, as it was likely realized in early vertebrates, which had extensive postcranial exoskeletal coverings.
منابع مشابه
An exclusively mesodermal origin of fin mesenchyme demonstrates that zebrafish trunk neural crest does not generate ectomesenchyme.
The neural crest is a multipotent stem cell population that arises from the dorsal aspect of the neural tube and generates both non-ectomesenchymal (melanocytes, peripheral neurons and glia) and ectomesenchymal (skeletogenic, odontogenic, cartilaginous and connective tissue) derivatives. In amniotes, only cranial neural crest generates both classes, with trunk neural crest restricted to non-ect...
متن کاملTrunk exoskeleton in teleosts is mesodermal in origin
The vertebrate mineralized skeleton is known to have first emerged as an exoskeleton that extensively covered the fossil jawless fish. The evolutionary origin of this exoskeleton has long been attributed to the emergence of the neural crest, but experimental evaluation for this is still poor. Here we determine the embryonic origin of scales and fin rays of medaka (teleost trunk exoskeletons) by...
متن کاملSlow muscle regulates the pattern of trunk neural crest migration in zebrafish.
In avians and mice, trunk neural crest migration is restricted to the anterior half of each somite. Sclerotome has been shown to play an essential role in this restriction; the potential role of other somite components in specifying neural crest migration is currently unclear. By contrast, in zebrafish trunk neural crest, migration on the medial pathway is restricted to the middle of the medial...
متن کاملGraded potential of neural crest to form cornea, sensory neurons and cartilage along the rostrocaudal axis.
Neural crest cells arising from different rostrocaudal axial levels form different sets of derivatives as diverse as ganglia, cartilage and cornea. These variations may be due to intrinsic properties of the cell populations, different environmental factors encountered during migration or some combination thereof. We test the relative roles of intrinsic versus extrinsic factors by challenging th...
متن کاملMigratory patterns and developmental potential of trunk neural crest cells in the axolotl embryo.
Using cell markers and grafting, we examined the timing of migration and developmental potential of trunk neural crest cells in axolotl. No obvious differences in pathway choice were noted for DiI-labeling at different lateral or medial positions of the trunk neural folds in neurulae, which contributed not only to neural crest but also to Rohon-Beard neurons. Labeling wild-type dorsal trunks at...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 12 شماره
صفحات -
تاریخ انتشار 2002